Robust Volume Assessment of Brain Tissues for 3-Dimensional Fourier Transformation MRI via a Novel Multispectral Technique
Jyh-Wen Chai,
Clayton C Chen,
Yi-Ying Wu,
Hung-Chieh Chen,
Yi-Hsin Tsai,
Hsian-Min Chen,
Tsuo-Hung Lan,
Yen-Chieh Ouyang and
San-Kan Lee
PLOS ONE, 2015, vol. 10, issue 2, 1-13
Abstract:
A new TRIO algorithm method integrating three different algorithms is proposed to perform brain MRI segmentation in the native coordinate space, with no need of transformation to a standard coordinate space or the probability maps for segmentation. The method is a simple voxel-based algorithm, derived from multispectral remote sensing techniques, and only requires minimal operator input to depict GM, WM, and CSF tissue clusters to complete classification of a 3D high-resolution multislice-multispectral MRI data. Results showed very high accuracy and reproducibility in classification of GM, WM, and CSF in multislice-multispectral synthetic MRI data. The similarity indexes, expressing overlap between classification results and the ground truth, were 0.951, 0.962, and 0.956 for GM, WM, and CSF classifications in the image data with 3% noise level and 0% non-uniformity intensity. The method particularly allows for classification of CSF with 0.994, 0.961 and 0.996 of accuracy, sensitivity and specificity in images data with 3% noise level and 0% non-uniformity intensity, which had seldom performed well in previous studies. As for clinical MRI data, the quantitative data of brain tissue volumes aligned closely with the brain morphometrics in three different study groups of young adults, elderly volunteers, and dementia patients. The results also showed very low rates of the intra- and extra-operator variability in measurements of the absolute volumes and volume fractions of cerebral GM, WM, and CSF in three different study groups. The mean coefficients of variation of GM, WM, and CSF volume measurements were in the range of 0.03% to 0.30% of intra-operator measurements and 0.06% to 0.45% of inter-operator measurements. In conclusion, the TRIO algorithm exhibits a remarkable ability in robust classification of multislice-multispectral brain MR images, which would be potentially applicable for clinical brain volumetric analysis and explicitly promising in cross-sectional and longitudinal studies of different subject groups.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115527 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 15527&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0115527
DOI: 10.1371/journal.pone.0115527
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().