Reducing Uncertainty in the American Community Survey through Data-Driven Regionalization
Seth E Spielman and
David C Folch
PLOS ONE, 2015, vol. 10, issue 2, 1-21
Abstract:
The American Community Survey (ACS) is the largest survey of US households and is the principal source for neighborhood scale information about the US population and economy. The ACS is used to allocate billions in federal spending and is a critical input to social scientific research in the US. However, estimates from the ACS can be highly unreliable. For example, in over 72% of census tracts, the estimated number of children under 5 in poverty has a margin of error greater than the estimate. Uncertainty of this magnitude complicates the use of social data in policy making, research, and governance. This article presents a heuristic spatial optimization algorithm that is capable of reducing the margins of error in survey data via the creation of new composite geographies, a process called regionalization. Regionalization is a complex combinatorial problem. Here rather than focusing on the technical aspects of regionalization we demonstrate how to use a purpose built open source regionalization algorithm to process survey data in order to reduce the margins of error to a user-specified threshold.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115626 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 15626&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0115626
DOI: 10.1371/journal.pone.0115626
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().