EconPapers    
Economics at your fingertips  
 

Figure-Associated Text Summarization and Evaluation

Balaji Polepalli Ramesh, Ricky J Sethi and Hong Yu

PLOS ONE, 2015, vol. 10, issue 2, 1-19

Abstract: Biomedical literature incorporates millions of figures, which are a rich and important knowledge resource for biomedical researchers. Scientists need access to the figures and the knowledge they represent in order to validate research findings and to generate new hypotheses. By themselves, these figures are nearly always incomprehensible to both humans and machines and their associated texts are therefore essential for full comprehension. The associated text of a figure, however, is scattered throughout its full-text article and contains redundant information content. In this paper, we report the continued development and evaluation of several figure summarization systems, the FigSum+ systems, that automatically identify associated texts, remove redundant information, and generate a text summary for every figure in an article. Using a set of 94 annotated figures selected from 19 different journals, we conducted an intrinsic evaluation of FigSum+. We evaluate the performance by precision, recall, F1, and ROUGE scores. The best FigSum+ system is based on an unsupervised method, achieving F1 score of 0.66 and ROUGE-1 score of 0.97. The annotated data is available at figshare.com (http://figshare.com/articles/Figure_Associated_Text_Summarization_and_Evaluation/858903).

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115671 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 15671&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0115671

DOI: 10.1371/journal.pone.0115671

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0115671