EconPapers    
Economics at your fingertips  
 

A Novel Medical Image Protection Scheme Using a 3-Dimensional Chaotic System

Chong Fu, Gao-yuan Zhang, Ou Bian, Wei-min Lei and Hong-feng Ma

PLOS ONE, 2014, vol. 9, issue 12, 1-25

Abstract: Recently, great concerns have been raised regarding the issue of medical image protection due to the increasing demand for telemedicine services, especially the teleradiology service. To meet this challenge, a novel chaos-based approach is suggested in this paper. To address the security and efficiency problems encountered by many existing permutation-diffusion type image ciphers, the new scheme utilizes a single 3D chaotic system, Chen's chaotic system, for both permutation and diffusion. In the permutation stage, we introduce a novel shuffling mechanism, which shuffles each pixel in the plain image by swapping it with another pixel chosen by two of the three state variables of Chen's chaotic system. The remaining variable is used for quantification of pseudorandom keystream for diffusion. Moreover, the selection of state variables is controlled by plain pixel, which enhances the security against known/chosen-plaintext attack. Thorough experimental tests are carried out and the results indicate that the proposed scheme provides an effective and efficient way for real-time secure medical image transmission over public networks.

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115773 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 15773&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0115773

DOI: 10.1371/journal.pone.0115773

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pone00:0115773