Predicting In Vitro Rumen VFA Production Using CNCPS Carbohydrate Fractions with Multiple Linear Models and Artificial Neural Networks
Ruilan Dong and
Guangyong Zhao
PLOS ONE, 2014, vol. 9, issue 12, 1-23
Abstract:
The objectives of this trial were to develop multiple linear regression (MLR) models and three-layer Levenberg-Marquardt back propagation (BP3) neural network models using the Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate fractions as dietary variables for predicting in vitro rumen volatile fatty acid (VFA) production and further compare MLR and BP3 models. Two datasets were established for the trial, of which the first dataset containing 45 feed mixtures with concentrate/roughage ratios of 10∶90, 20∶80, 30∶70, 40∶60, and 50∶50 were used for establishing the models and the second dataset containing 10 feed mixtures with the same concentrate/roughage ratios with the first dataset were used for testing the models. The VFA production of feed samples was determined using an in vitro incubation technique. The CNCPS carbohydrate fractions (g), i.e. CA (sugars), CB1 (starch and pectin), CB2 (available cell wall) of feed samples were calculated based on chemical analysis. The performance of MLR models and BP3 models were compared using a paired t-test, the determination coefficient (R2) and the root mean square prediction error (RMSPE) between observed and predicted values. Statistical analysis indicated that VFA production (mmol) was significantly correlated with CNCPS carbohydrate fractions (g) CA, CB1, and CB2 in a multiple linear pattern. Compared with MLR models, BP3 models were more accurate in predicting acetate, propionate, and total VFA production while similar in predicting butyrate production. The trial indicated that both MLR and BP3 models were suitable for predicting in vitro rumen VFA production of feed mixtures using CNCPS carbohydrate fractions CA, CB1, and CB2 as input dietary variables while BP3 models showed greater accuracy for prediction.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116290 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 16290&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0116290
DOI: 10.1371/journal.pone.0116290
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().