Intercarrier Interference Reduction in MC-CDMA System through Second Order Duobinary Coded Phase Rotated Conjugate Cancellation Scheme
S Chitra and
N Kumaratharan
PLOS ONE, 2015, vol. 10, issue 3, 1-14
Abstract:
Multi-carrier code division multiple access (MC-CDMA) technique is one of the strong candidates for next generation wireless mobile communication systems. Multi-carrier systems are very much sensitive to carrier frequency offset (CFO) results in intercarrier interference (ICI). To mitigate ICI without any spectral loss, a second order duobinary coded phase rotated conjugate cancellation algorithm is proposed in this paper. In the conventional phase rotated conjugate cancellation (PRCC) technique, one path carries the MC-CDMA signal with a phase spin of ϕ and the other path carries the conjugate of the first path signal with -ϕ phase spin. This artificial phase rotation allows the transmitter to tune the transmitted signals so that the ICI effects could be mutually cancelled at the receiver. Although the PRCC technique reduces the spectral efficiency, the limitation can be overcome by the joint second order duobinary coding scheme with PRCC technique. In the proposed method, the correlative coding between the binary symbols modulated on adjacent subcarriers is used to reduce the ICI without any spectral loss. Simulation results show that the proposed PRCC method provides better carrier to interference ratio (CIR) and bit error rate (BER) performances compared to the conventional conjugate cancellation (CC) technique.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116326 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 16326&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0116326
DOI: 10.1371/journal.pone.0116326
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().