EconPapers    
Economics at your fingertips  
 

Performance of Social Network Sensors during Hurricane Sandy

Yury Kryvasheyeu, Haohui Chen, Esteban Moro, Pascal Van Hentenryck and Manuel Cebrian

PLOS ONE, 2015, vol. 10, issue 2, 1-19

Abstract: Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow and derive early-warning sensors, thus improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioral properties derived from the “friendship paradox”, is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users’ network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays a significant role in determining the scale of such an advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility to implement a simple “sentiment sensing” technique that can detect and locate disasters.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117288 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 17288&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0117288

DOI: 10.1371/journal.pone.0117288

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0117288