EconPapers    
Economics at your fingertips  
 

Application of Time Dependent Probabilistic Collision State Checkers in Highly Dynamic Environments

Javier Hernández-Aceituno, Leopoldo Acosta and José D Piñeiro

PLOS ONE, 2015, vol. 10, issue 3, 1-17

Abstract: When computing the trajectory of an autonomous vehicle, inevitable collision states must be avoided at all costs, so no harm comes to the device or pedestrians around it. In dynamic environments, considering collisions as binary events is risky and inefficient, as the future position of moving obstacles is unknown. We introduce a time-dependent probabilistic collision state checker system, which traces a safe route with a minimum collision probability for a robot. We apply a sequential Bayesian model to calculate approximate predictions of the movement patterns of the obstacles, and define a time-dependent variation of the Dijkstra algorithm to compute statistically safe trajectories through a crowded area. We prove the efficiency of our methods through experimentation, using a self-guided robotic device.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119930 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 19930&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0119930

DOI: 10.1371/journal.pone.0119930

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0119930