EconPapers    
Economics at your fingertips  
 

Automatic Segmentation of Myocardium from Black-Blood MR Images Using Entropy and Local Neighborhood Information

Qian Zheng, Zhentai Lu, Minghui Zhang, Lin Xu, Huan Ma, Shengli Song, Qianjin Feng, Yanqiu Feng, Wufan Chen and Taigang He

PLOS ONE, 2015, vol. 10, issue 3, 1-17

Abstract: By using entropy and local neighborhood information, we present in this study a robust adaptive Gaussian regularizing Chan–Vese (CV) model to segment the myocardium from magnetic resonance images with intensity inhomogeneity. By utilizing the circular Hough transformation (CHT) our model is able to detect epicardial and endocardial contours of the left ventricle (LV) as circles automatically, and the circles are used as the initialization. In the cost functional of our model, the interior and exterior energies are weighted by the entropy to improve the robustness of the evolving curve. Local neighborhood information is used to evolve the level set function to reduce the impact of the heterogeneity inside the regions and to improve the segmentation accuracy. An adaptive window is utilized to reduce the sensitivity to initialization. The Gaussian kernel is used to regularize the level set function, which can not only ensure the smoothness and stability of the level set function, but also eliminate the traditional Euclidean length term and re-initialization. Extensive validation of the proposed method on patient data demonstrates its superior performance over other state-of-the-art methods.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120018 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 20018&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0120018

DOI: 10.1371/journal.pone.0120018

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pone00:0120018