EconPapers    
Economics at your fingertips  
 

Temporally Adaptive Sampling: A Case Study in Rare Species Survey Design with Marbled Salamanders (Ambystoma opacum)

Noah D Charney, Jacob E Kubel and Charles S Eiseman

PLOS ONE, 2015, vol. 10, issue 3, 1-14

Abstract: Improving detection rates for elusive species with clumped distributions is often accomplished through adaptive sampling designs. This approach can be extended to include species with temporally variable detection probabilities. By concentrating survey effort in years when the focal species are most abundant or visible, overall detection rates can be improved. This requires either long-term monitoring at a few locations where the species are known to occur or models capable of predicting population trends using climatic and demographic data. For marbled salamanders (Ambystoma opacum) in Massachusetts, we demonstrate that annual variation in detection probability of larvae is regionally correlated. In our data, the difference in survey success between years was far more important than the difference among the three survey methods we employed: diurnal surveys, nocturnal surveys, and dipnet surveys. Based on these data, we simulate future surveys to locate unknown populations under a temporally adaptive sampling framework. In the simulations, when pond dynamics are correlated over the focal region, the temporally adaptive design improved mean survey success by as much as 26% over a non-adaptive sampling design. Employing a temporally adaptive strategy costs very little, is simple, and has the potential to substantially improve the efficient use of scarce conservation funds.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120714 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 20714&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0120714

DOI: 10.1371/journal.pone.0120714

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0120714