Insect-Inspired Navigation Algorithm for an Aerial Agent Using Satellite Imagery
Douglas D Gaffin,
Alexander Dewar,
Paul Graham and
Andrew Philippides
PLOS ONE, 2015, vol. 10, issue 4, 1-14
Abstract:
Humans have long marveled at the ability of animals to navigate swiftly, accurately, and across long distances. Many mechanisms have been proposed for how animals acquire, store, and retrace learned routes, yet many of these hypotheses appear incongruent with behavioral observations and the animals’ neural constraints. The “Navigation by Scene Familiarity Hypothesis” proposed originally for insect navigation offers an elegantly simple solution for retracing previously experienced routes without the need for complex neural architectures and memory retrieval mechanisms. This hypothesis proposes that an animal can return to a target location by simply moving toward the most familiar scene at any given point. Proof of concept simulations have used computer-generated ant’s-eye views of the world, but here we test the ability of scene familiarity algorithms to navigate training routes across satellite images extracted from Google Maps. We find that Google satellite images are so rich in visual information that familiarity algorithms can be used to retrace even tortuous routes with low-resolution sensors. We discuss the implications of these findings not only for animal navigation but also for the potential development of visual augmentation systems and robot guidance algorithms.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122077 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 22077&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0122077
DOI: 10.1371/journal.pone.0122077
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().