MLViS: A Web Tool for Machine Learning-Based Virtual Screening in Early-Phase of Drug Discovery and Development
Selcuk Korkmaz,
Gokmen Zararsiz and
Dincer Goksuluk
PLOS ONE, 2015, vol. 10, issue 4, 1-15
Abstract:
Virtual screening is an important step in early-phase of drug discovery process. Since there are thousands of compounds, this step should be both fast and effective in order to distinguish drug-like and nondrug-like molecules. Statistical machine learning methods are widely used in drug discovery studies for classification purpose. Here, we aim to develop a new tool, which can classify molecules as drug-like and nondrug-like based on various machine learning methods, including discriminant, tree-based, kernel-based, ensemble and other algorithms. To construct this tool, first, performances of twenty-three different machine learning algorithms are compared by ten different measures, then, ten best performing algorithms have been selected based on principal component and hierarchical cluster analysis results. Besides classification, this application has also ability to create heat map and dendrogram for visual inspection of the molecules through hierarchical cluster analysis. Moreover, users can connect the PubChem database to download molecular information and to create two-dimensional structures of compounds. This application is freely available through www.biosoft.hacettepe.edu.tr/MLViS/.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124600 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24600&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0124600
DOI: 10.1371/journal.pone.0124600
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().