Numerous but Rare: An Exploration of Magic Squares
Akimasa Kitajima and
Macoto Kikuchi
PLOS ONE, 2015, vol. 10, issue 5, 1-7
Abstract:
How rare are magic squares? So far, the exact number of magic squares of order n is only known for n ≤ 5. For larger squares, we need statistical approaches for estimating the number. For this purpose, we formulated the problem as a combinatorial optimization problem and applied the Multicanonical Monte Carlo method (MMC), which has been developed in the field of computational statistical physics. Among all the possible arrangements of the numbers 1; 2, …, n2 in an n × n square, the probability of finding a magic square decreases faster than the exponential of n. We estimated the number of magic squares for n ≤ 30. The number of magic squares for n = 30 was estimated to be 6.56(29) × 102056 and the corresponding probability is as small as 10−212. Thus the MMC is effective for counting very rare configurations.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125062 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25062&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0125062
DOI: 10.1371/journal.pone.0125062
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().