EconPapers    
Economics at your fingertips  
 

A Comparison of Aggregate P-Value Methods and Multivariate Statistics for Self-Contained Tests of Metabolic Pathway Analysis

Matthew W Mitchell

PLOS ONE, 2015, vol. 10, issue 4, 1-17

Abstract: For pathway analysis of genomic data, the most common methods involve combining p-values from individual statistical tests. However, there are several multivariate statistical methods that can be used to test whether a pathway has changed. Because of the large number of variables and pathway sizes in genomics data, some of these statistics cannot be computed. However, in metabolomics data, the number of variables and pathway sizes are typically much smaller, making such computations feasible. Of particular interest is being able to detect changes in pathways that may not be detected for the individual variables. We compare the performance of both the p-value methods and multivariate statistics for self-contained tests with an extensive simulation study and a human metabolomics study. Permutation tests, rather than asymptotic results are used to assess the statistical significance of the pathways. Furthermore, both one and two-sided alternatives hypotheses are examined. From the human metabolomic study, many pathways were statistically significant, although the majority of the individual variables in the pathway were not. Overall, the p-value methods perform at least as well as the multivariate statistics for these scenarios.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125081 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25081&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0125081

DOI: 10.1371/journal.pone.0125081

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0125081