Competing for Attention in Social Media under Information Overload Conditions
Ling Feng,
Yanqing Hu,
Baowen Li,
H Eugene Stanley,
Shlomo Havlin and
Lidia A Braunstein
PLOS ONE, 2015, vol. 10, issue 7, 1-13
Abstract:
Modern social media are becoming overloaded with information because of the rapidly-expanding number of information feeds. We analyze the user-generated content in Sina Weibo, and find evidence that the spread of popular messages often follow a mechanism that differs from the spread of disease, in contrast to common belief. In this mechanism, an individual with more friends needs more repeated exposures to spread further the information. Moreover, our data suggest that for certain messages the chance of an individual to share the message is proportional to the fraction of its neighbours who shared it with him/her, which is a result of competition for attention. We model this process using a fractional susceptible infected recovered (FSIR) model, where the infection probability of a node is proportional to its fraction of infected neighbors. Our findings have dramatic implications for information contagion. For example, using the FSIR model we find that real-world social networks have a finite epidemic threshold in contrast to the zero threshold in disease epidemic models. This means that when individuals are overloaded with excess information feeds, the information either reaches out the population if it is above the critical epidemic threshold, or it would never be well received.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126090 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26090&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0126090
DOI: 10.1371/journal.pone.0126090
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().