Quantitative Risk Stratification of Oral Leukoplakia with Exfoliative Cytology
Yao Liu,
Jianying Li,
Xiaoyong Liu,
Xudong Liu,
Waqaar Khawar,
Xinyan Zhang,
Fan Wang,
Xiaoxin Chen and
Zheng Sun
PLOS ONE, 2015, vol. 10, issue 5, 1-16
Abstract:
Exfoliative cytology has been widely used for early diagnosis of oral squamous cell carcinoma (OSCC). Test outcome is reported as “negative”, “atypical” (defined as abnormal epithelial changes of uncertain diagnostic significance), and “positive” (defined as definitive cellular evidence of epithelial dysplasia or carcinoma). The major challenge is how to properly manage the “atypical” patients in order to diagnose OSCC early and prevent OSCC. In this study, we collected exfoliative cytology data, histopathology data, and clinical data of normal subjects (n=102), oral leukoplakia (OLK) patients (n=82), and OSCC patients (n=93), and developed a data analysis procedure for quantitative risk stratification of OLK patients. This procedure involving a step called expert-guided data transformation and reconstruction (EdTAR) which allows automatic data processing and reconstruction and reveals informative signals for subsequent risk stratification. Modern machine learning techniques were utilized to build statistical prediction models on the reconstructed data. Among the several models tested using resampling methods for parameter pruning and performance evaluation, Support Vector Machine (SVM) was found to be optimal with a high sensitivity (median>0.98) and specificity (median>0.99). With the SVM model, we constructed an oral cancer risk index (OCRI) which may potentially guide clinical follow-up of OLK patients. One OLK patient with an initial OCRI of 0.88 developed OSCC after 40 months of follow-up. In conclusion, we have developed a statistical method for qualitative risk stratification of OLK patients. This method may potentially improve cost-effectiveness of clinical follow-up of OLK patients, and help design clinical chemoprevention trial for high-risk populations.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126760 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26760&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0126760
DOI: 10.1371/journal.pone.0126760
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().