Adaptive Tensor-Based Principal Component Analysis for Low-Dose CT Image Denoising
Danni Ai,
Jian Yang,
Jingfan Fan,
Weijian Cong and
Yongtian Wang
PLOS ONE, 2015, vol. 10, issue 5, 1-20
Abstract:
Computed tomography (CT) has a revolutionized diagnostic radiology but involves large radiation doses that directly impact image quality. In this paper, we propose adaptive tensor-based principal component analysis (AT-PCA) algorithm for low-dose CT image denoising. Pixels in the image are presented by their nearby neighbors, and are modeled as a patch. Adaptive searching windows are calculated to find similar patches as training groups for further processing. Tensor-based PCA is used to obtain transformation matrices, and coefficients are sequentially shrunk by the linear minimum mean square error. Reconstructed patches are obtained, and a denoised image is finally achieved by aggregating all of these patches. The experimental results of the standard test image show that the best results are obtained with two denoising rounds according to six quantitative measures. For the experiment on the clinical images, the proposed AT-PCA method can suppress the noise, enhance the edge, and improve the image quality more effectively than NLM and KSVD denoising methods.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126914 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26914&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0126914
DOI: 10.1371/journal.pone.0126914
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().