Personalized Mortality Prediction Driven by Electronic Medical Data and a Patient Similarity Metric
Joon Lee,
David M Maslove and
Joel A Dubin
PLOS ONE, 2015, vol. 10, issue 5, 1-13
Abstract:
Background: Clinical outcome prediction normally employs static, one-size-fits-all models that perform well for the average patient but are sub-optimal for individual patients with unique characteristics. In the era of digital healthcare, it is feasible to dynamically personalize decision support by identifying and analyzing similar past patients, in a way that is analogous to personalized product recommendation in e-commerce. Our objectives were: 1) to prove that analyzing only similar patients leads to better outcome prediction performance than analyzing all available patients, and 2) to characterize the trade-off between training data size and the degree of similarity between the training data and the index patient for whom prediction is to be made. Methods and Findings: We deployed a cosine-similarity-based patient similarity metric (PSM) to an intensive care unit (ICU) database to identify patients that are most similar to each patient and subsequently to custom-build 30-day mortality prediction models. Rich clinical and administrative data from the first day in the ICU from 17,152 adult ICU admissions were analyzed. The results confirmed that using data from only a small subset of most similar patients for training improves predictive performance in comparison with using data from all available patients. The results also showed that when too few similar patients are used for training, predictive performance degrades due to the effects of small sample sizes. Our PSM-based approach outperformed well-known ICU severity of illness scores. Although the improved prediction performance is achieved at the cost of increased computational burden, Big Data technologies can help realize personalized data-driven decision support at the point of care. Conclusions: The present study provides crucial empirical evidence for the promising potential of personalized data-driven decision support systems. With the increasing adoption of electronic medical record (EMR) systems, our novel medical data analytics contributes to meaningful use of EMR data.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127428 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 27428&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0127428
DOI: 10.1371/journal.pone.0127428
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().