Computational Fact Checking from Knowledge Networks
Giovanni Luca Ciampaglia,
Prashant Shiralkar,
Luis M Rocha,
Johan Bollen,
Filippo Menczer and
Alessandro Flammini
PLOS ONE, 2015, vol. 10, issue 6, 1-13
Abstract:
Traditional fact checking by expert journalists cannot keep up with the enormous volume of information that is now generated online. Computational fact checking may significantly enhance our ability to evaluate the veracity of dubious information. Here we show that the complexities of human fact checking can be approximated quite well by finding the shortest path between concept nodes under properly defined semantic proximity metrics on knowledge graphs. Framed as a network problem this approach is feasible with efficient computational techniques. We evaluate this approach by examining tens of thousands of claims related to history, entertainment, geography, and biographical information using a public knowledge graph extracted from Wikipedia. Statements independently known to be true consistently receive higher support via our method than do false ones. These findings represent a significant step toward scalable computational fact-checking methods that may one day mitigate the spread of harmful misinformation.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128193 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 28193&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0128193
DOI: 10.1371/journal.pone.0128193
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().