EconPapers    
Economics at your fingertips  
 

Analysis of Low Frequency Protein Truncating Stop-Codon Variants and Fasting Concentration of Growth Hormone

Erik Hallengren, Peter Almgren, Gunnar Engström, Margaretha Persson and Olle Melander

PLOS ONE, 2015, vol. 10, issue 6, 1-12

Abstract: Background: The genetic background of Growth Hormone (GH) secretion is not well understood. Mutations giving rise to a stop codon have a high likelihood of affecting protein function. Objectives: To analyze likely functional stop codon mutations that are associated with fasting plasma concentration of Growth Hormone. Methods: We analyzed stop codon mutations in 5451 individuals in the Malmö Diet and Cancer study by genotyping the Illumina Exome Chip. To enrich for stop codon mutations with likely functional effects on protein function, we focused on those disrupting >80% of the predicted amino acid sequence, which were carried by ≥10 individuals. Such mutations were related to GH concentration, measured with a high sensitivity assay (hs-GH) and, if nominally significant, to GH related phenotypes, using linear regression analysis. Results: Two stop codon mutations were associated with the fasting concentration of hs-GH. rs121909305 (NP_005370.1:p.R93*) [Minor Allele Frequency (MAF) = 0.8%] in the Myosin 1A gene (MYO1A) was associated with a 0.36 (95%CI, 0.04 to 0.54; p=0.02) increment of the standardized value of the natural logarithm of hs-GH per 1 minor allele and rs35699176 (NP_067040.1:p.Q100*) in the Zink Finger protein 77 gene (ZNF77) (MAF = 4.8%) was associated with a 0.12 (95%CI, 0.02 to 0.22; p = 0.02) increase of hs-GH. The mutated high hs-GH associated allele of MYO1A was related to lower BMI (β-coefficient, -0.22; p = 0.05), waist (β-coefficient, -0.22; p = 0.04), body fat percentage (β-coefficient, -0.23; p = 0.03) and with higher HDL (β-coefficient, 0.23; p = 0.04). The ZNF77 stop codon was associated with height (β-coefficient, 0.11; p = 0.02) but not with cardiometabolic risk factors. Conclusion: We here suggest that a stop codon of MYO1A, disrupting 91% of the predicted amino acid sequence, is associated with higher hs-GH and GH-related traits suggesting that MYO1A is involved in GH metabolism and possibly body fat distribution. However, our results are preliminary and need replication in independent populations.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128348 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 28348&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0128348

DOI: 10.1371/journal.pone.0128348

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0128348