EconPapers    
Economics at your fingertips  
 

Beyond Benford's Law: Distinguishing Noise from Chaos

Qinglei Li, Zuntao Fu and Naiming Yuan

PLOS ONE, 2015, vol. 10, issue 6, 1-11

Abstract: Determinism and randomness are two inherent aspects of all physical processes. Time series from chaotic systems share several features identical with those generated from stochastic processes, which makes them almost undistinguishable. In this paper, a new method based on Benford's law is designed in order to distinguish noise from chaos by only information from the first digit of considered series. By applying this method to discrete data, we confirm that chaotic data indeed can be distinguished from noise data, quantitatively and clearly.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129161 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 29161&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0129161

DOI: 10.1371/journal.pone.0129161

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0129161