Comparing Different Classifiers in Sensory Motor Brain Computer Interfaces
Hossein Bashashati,
Rabab K Ward,
Gary E Birch and
Ali Bashashati
PLOS ONE, 2015, vol. 10, issue 6, 1-17
Abstract:
A problem that impedes the progress in Brain-Computer Interface (BCI) research is the difficulty in reproducing the results of different papers. Comparing different algorithms at present is very difficult. Some improvements have been made by the use of standard datasets to evaluate different algorithms. However, the lack of a comparison framework still exists. In this paper, we construct a new general comparison framework to compare different algorithms on several standard datasets. All these datasets correspond to sensory motor BCIs, and are obtained from 21 subjects during their operation of synchronous BCIs and 8 subjects using self-paced BCIs. Other researchers can use our framework to compare their own algorithms on their own datasets. We have compared the performance of different popular classification algorithms over these 29 subjects and performed statistical tests to validate our results. Our findings suggest that, for a given subject, the choice of the classifier for a BCI system depends on the feature extraction method used in that BCI system. This is in contrary to most of publications in the field that have used Linear Discriminant Analysis (LDA) as the classifier of choice for BCI systems.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129435 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 29435&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0129435
DOI: 10.1371/journal.pone.0129435
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().