Information Filtering via Heterogeneous Diffusion in Online Bipartite Networks
Fu-Guo Zhang and
An Zeng
PLOS ONE, 2015, vol. 10, issue 6, 1-13
Abstract:
The rapid expansion of Internet brings us overwhelming online information, which is impossible for an individual to go through all of it. Therefore, recommender systems were created to help people dig through this abundance of information. In networks composed by users and objects, recommender algorithms based on diffusion have been proven to be one of the best performing methods. Previous works considered the diffusion process from user to object, and from object to user to be equivalent. We show in this work that it is not the case and we improve the quality of the recommendation by taking into account the asymmetrical nature of this process. We apply this idea to modify the state-of-the-art recommendation methods. The simulation results show that the new methods can outperform these existing methods in both recommendation accuracy and diversity. Finally, this modification is checked to be able to improve the recommendation in a realistic case.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129459 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 29459&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0129459
DOI: 10.1371/journal.pone.0129459
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().