EconPapers    
Economics at your fingertips  
 

Jointly Learning Multiple Sequential Dynamics for Human Action Recognition

An-An Liu, Yu-Ting Su, Wei-Zhi Nie and Zhao-Xuan Yang

PLOS ONE, 2015, vol. 10, issue 7, 1-21

Abstract: Discovering visual dynamics during human actions is a challenging task for human action recognition. To deal with this problem, we theoretically propose the multi-task conditional random fields model and explore its application on human action recognition. For visual representation, we propose the part-induced spatiotemporal action unit sequence to represent each action sample with multiple partwise sequential feature subspaces. For model learning, we propose the multi-task conditional random fields (MTCRFs) model to discover the sequence-specific structure and the sequence-shared relationship. Specifically, the multi-chain graph structure and the corresponding probabilistic model are designed to represent the interaction among multiple part-induced action unit sequences. Moreover we propose the model learning and inference methods to discover temporal context within individual action unit sequence and the latent correlation among different body parts. Extensive experiments are implemented to demonstrate the superiority of the proposed method on two popular RGB human action datasets, KTH & TJU, and the depth dataset in MSR Daily Activity 3D.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130884 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30884&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0130884

DOI: 10.1371/journal.pone.0130884

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0130884