EconPapers    
Economics at your fingertips  
 

On Short-Time Estimation of Vocal Tract Length from Formant Frequencies

Adam C Lammert and Shrikanth S Narayanan

PLOS ONE, 2015, vol. 10, issue 7, 1-23

Abstract: Vocal tract length is highly variable across speakers and determines many aspects of the acoustic speech signal, making it an essential parameter to consider for explaining behavioral variability. A method for accurate estimation of vocal tract length from formant frequencies would afford normalization of interspeaker variability and facilitate acoustic comparisons across speakers. A framework for considering estimation methods is developed from the basic principles of vocal tract acoustics, and an estimation method is proposed that follows naturally from this framework. The proposed method is evaluated using acoustic characteristics of simulated vocal tracts ranging from 14 to 19 cm in length, as well as real-time magnetic resonance imaging data with synchronous audio from five speakers whose vocal tracts range from 14.5 to 18.0 cm in length. Evaluations show improvements in accuracy over previously proposed methods, with 0.631 and 1.277 cm root mean square error on simulated and human speech data, respectively. Empirical results show that the effectiveness of the proposed method is based on emphasizing higher formant frequencies, which seem less affected by speech articulation. Theoretical predictions of formant sensitivity reinforce this empirical finding. Moreover, theoretical insights are explained regarding the reason for differences in formant sensitivity.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132193 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 32193&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0132193

DOI: 10.1371/journal.pone.0132193

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pone00:0132193