A Statistical Method for the Analysis of Speech Intelligibility Tests
Wenli Hu,
Brett A Swanson and
Gillian Z Heller
PLOS ONE, 2015, vol. 10, issue 7, 1-17
Abstract:
Speech intelligibility tests are conducted on hearing-impaired people for the purpose of evaluating the performance of a hearing device under varying listening conditions and device settings or algorithms. The speech reception threshold (SRT) is typically defined as the signal-to-noise ratio (SNR) at which a subject scores 50% correct on a speech intelligibility test. An SRT is conventionally measured with an adaptive procedure, in which the SNR of successive sentences is adjusted based on the subject's scores on previous sentences. The SRT can be estimated as the mean of a subset of the SNR levels, or by fitting a psychometric function. A set of SRT results is typically analyzed with a repeated measures analysis of variance. We propose an alternative approach for analysis, a zero-and-one inflated beta regression model, in which an observation is a single sentence score rather than an SRT. A parametrization of the model is defined that allows efficient maximum likelihood estimation of the parameters. Fitted values from this model, when plotted against SNR, are analogous to a mean psychometric function in the traditional approach. Confidence intervals for the fitted value curves are obtained by parametric bootstrap. The proposed approach was applied retrospectively to data from two studies that assessed the speech perception of cochlear implant recipients using different sound processing algorithms under different listening conditions. The proposed approach yielded mean SRTs for each condition that were consistent with the traditional approach, but were more informative. It provided the mean psychometric curve of each condition, revealing differences in slope, i.e. differential performance at different parts of the SNR spectrum. Another advantage of the new method of analysis is that results are stated in terms of differences in percent correct scores, which is more interpretable than results from the traditional analysis.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132409 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 32409&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0132409
DOI: 10.1371/journal.pone.0132409
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().