EconPapers    
Economics at your fingertips  
 

Mammographic Breast Density and Common Genetic Variants in Breast Cancer Risk Prediction

Charmaine Pei Ling Lee, Hyungwon Choi, Khee Chee Soo, Min-Han Tan, Wen Yee Chay, Kee Seng Chia, Jenny Liu, Jingmei Li and Mikael Hartman

PLOS ONE, 2015, vol. 10, issue 9, 1-16

Abstract: Introduction: Known prediction models for breast cancer can potentially by improved by the addition of mammographic density and common genetic variants identified in genome-wide associations studies known to be associated with risk of the disease. We evaluated the benefit of including mammographic density and the cumulative effect of genetic variants in breast cancer risk prediction among women in a Singapore population. Methods: We estimated the risk of breast cancer using a prospective cohort of 24,161 women aged 50 to 64 from Singapore with available mammograms and known risk factors for breast cancer who were recruited between 1994 and 1997. We measured mammographic density using the medio-lateral oblique views of both breasts. Each woman’s genotype for 75 SNPs was simulated based on the genotype frequency obtained from the Breast Cancer Association Consortium data and the cumulative effect was summarized by a genetic risk score (GRS). Any improvement in the performance of our proposed prediction model versus one containing only variables from the Gail model was assessed by changes in receiver-operating characteristic and predictive values. Results: During 17 years of follow-up, 680 breast cancer cases were diagnosed. The multivariate-adjusted hazard ratios (95% confidence intervals) were 1.60 (1.22–2.10), 2.20 (1.65–2.92), 2.33 (1.71–3.20), 2.12 (1.43–3.14), and 3.27 (2.24–4.76) for the corresponding mammographic density categories: 11-20cm2, 21-30cm2, 31-40cm2, 41-50cm2, 51-60cm2, and 1.10 (1.03–1.16) for GRS. At the predicted absolute 10-year risk thresholds of 2.5% and 3.0%, a model with mammographic density and GRS could correctly identify 0.9% and 0.5% more women who would develop the disease compared to a model using only the Gail variables, respectively. Conclusion: Mammographic density and common genetic variants can improve the discriminatory power of an established breast cancer risk prediction model among females in Singapore.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136650 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 36650&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0136650

DOI: 10.1371/journal.pone.0136650

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0136650