EconPapers    
Economics at your fingertips  
 

Fast Second Degree Total Variation Method for Image Compressive Sensing

Pengfei Liu, Liang Xiao and Jun Zhang

PLOS ONE, 2015, vol. 10, issue 9, 1-18

Abstract: This paper presents a computationally efficient algorithm for image compressive sensing reconstruction using a second degree total variation (HDTV2) regularization. Firstly, a preferably equivalent formulation of the HDTV2 functional is derived, which can be formulated as a weighted L1-L2 mixed norm of second degree image derivatives under the spectral decomposition framework. Secondly, using the equivalent formulation of HDTV2, we introduce an efficient forward-backward splitting (FBS) scheme to solve the HDTV2-based image reconstruction model. Furthermore, from the averaged non-expansive operator point of view, we make a detailed analysis on the convergence of the proposed FBS algorithm. Experiments on medical images demonstrate that the proposed method outperforms several fast algorithms of the TV and HDTV2 reconstruction models in terms of peak signal to noise ratio (PSNR), structural similarity index (SSIM) and convergence speed.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137115 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 37115&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0137115

DOI: 10.1371/journal.pone.0137115

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0137115