One Giant Leap for Categorizers: One Small Step for Categorization Theory
J David Smith and
Shawn W Ell
PLOS ONE, 2015, vol. 10, issue 9, 1-22
Abstract:
We explore humans’ rule-based category learning using analytic approaches that highlight their psychological transitions during learning. These approaches confirm that humans show qualitatively sudden psychological transitions during rule learning. These transitions contribute to the theoretical literature contrasting single vs. multiple category-learning systems, because they seem to reveal a distinctive learning process of explicit rule discovery. A complete psychology of categorization must describe this learning process, too. Yet extensive formal-modeling analyses confirm that a wide range of current (gradient-descent) models cannot reproduce these transitions, including influential rule-based models (e.g., COVIS) and exemplar models (e.g., ALCOVE). It is an important theoretical conclusion that existing models cannot explain humans’ rule-based category learning. The problem these models have is the incremental algorithm by which learning is simulated. Humans descend no gradient in rule-based tasks. Very different formal-modeling systems will be required to explain humans’ psychology in these tasks. An important next step will be to build a new generation of models that can do so.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137334 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 37334&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0137334
DOI: 10.1371/journal.pone.0137334
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).