PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks
Thong Pham,
Paul Sheridan and
Hidetoshi Shimodaira
PLOS ONE, 2015, vol. 10, issue 9, 1-18
Abstract:
Preferential attachment is a stochastic process that has been proposed to explain certain topological features characteristic of complex networks from diverse domains. The systematic investigation of preferential attachment is an important area of research in network science, not only for the theoretical matter of verifying whether this hypothesized process is operative in real-world networks, but also for the practical insights that follow from knowledge of its functional form. Here we describe a maximum likelihood based estimation method for the measurement of preferential attachment in temporal complex networks. We call the method PAFit, and implement it in an R package of the same name. PAFit constitutes an advance over previous methods primarily because we based it on a nonparametric statistical framework that enables attachment kernel estimation free of any assumptions about its functional form. We show this results in PAFit outperforming the popular methods of Jeong and Newman in Monte Carlo simulations. What is more, we found that the application of PAFit to a publically available Flickr social network dataset yielded clear evidence for a deviation of the attachment kernel from the popularly assumed log-linear form. Independent of our main work, we provide a correction to a consequential error in Newman’s original method which had evidently gone unnoticed since its publication over a decade ago.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137796 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 37796&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0137796
DOI: 10.1371/journal.pone.0137796
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).