EconPapers    
Economics at your fingertips  
 

A Novel Virus-Patch Dynamic Model

Lu-Xing Yang and Xiaofan Yang

PLOS ONE, 2015, vol. 10, issue 9, 1-16

Abstract: The distributed patch dissemination strategies are a promising alternative to the conventional centralized patch dissemination strategies. This paper aims to establish a theoretical framework for evaluating the effectiveness of distributed patch dissemination mechanism. Assuming that the Internet offers P2P service for every pair of nodes on the network, a dynamic model capturing both the virus propagation mechanism and the distributed patch dissemination mechanism is proposed. This model takes into account the infected removable storage media and hence captures the interaction of patches with viruses better than the original SIPS model. Surprisingly, the proposed model exhibits much simpler dynamic properties than the original SIPS model. Specifically, our model admits only two potential (viral) equilibria and undergoes a fold bifurcation. The global stabilities of the two equilibria are determined. Consequently, the dynamical properties of the proposed model are fully understood. Furthermore, it is found that reducing the probability per unit time of disconnecting a node from the Internet benefits the containment of electronic viruses.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137858 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 37858&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0137858

DOI: 10.1371/journal.pone.0137858

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0137858