A Modeling Insight into Adipose-Derived Stem Cell Myogenesis
Rajiv S Deshpande,
Warren L Grayson and
Alexander A Spector
PLOS ONE, 2015, vol. 10, issue 9, 1-17
Abstract:
Adipose-derived stem cells (ASCs) are clinically important in regenerative medicine as they are relatively easy to obtain, are characterized by low morbidity, and can differentiate into myogenic progenitor cells. Although studies have elucidated the principal markers, PAX7, Desmin, MyoD, and MHC, the underlying mechanisms are not completely understood. This motivates the application of computational methods to facilitate greater understanding of such processes. In the following, we present a multi-stage kinetic model comprising a system of ordinary differential equations (ODEs). We sought to model ASC differentiation using data from a static culture, where no strain is applied, and a dynamic culture, where 10% strain is applied. The coefficients of the equations have been modulated by those experimental data points. To correctly represent the trajectories, various switches and a feedback factor based on total cell number have been introduced to better represent the biology of ASC differentiation. Furthermore, the model has then been applied to predict ASC fate for strains different from those used in the experimental conditions and for times longer than the duration of the experiment. Analysis of the results reveals unique characteristics of ASC myogenesis under dynamic conditions of the applied strain.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137918 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 37918&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0137918
DOI: 10.1371/journal.pone.0137918
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().