EconPapers    
Economics at your fingertips  
 

Human Rights Texts: Converting Human Rights Primary Source Documents into Data

Christopher J Fariss, Fridolin J Linder, Zachary M Jones, Charles D Crabtree, Megan A Biek, Ana-Sophia M Ross, Taranamol Kaur and Michael Tsai

PLOS ONE, 2015, vol. 10, issue 9, 1-19

Abstract: We introduce and make publicly available a large corpus of digitized primary source human rights documents which are published annually by monitoring agencies that include Amnesty International, Human Rights Watch, the Lawyers Committee for Human Rights, and the United States Department of State. In addition to the digitized text, we also make available and describe document-term matrices, which are datasets that systematically organize the word counts from each unique document by each unique term within the corpus of human rights documents. To contextualize the importance of this corpus, we describe the development of coding procedures in the human rights community and several existing categorical indicators that have been created by human coding of the human rights documents contained in the corpus. We then discuss how the new human rights corpus and the existing human rights datasets can be used with a variety of statistical analyses and machine learning algorithms to help scholars understand how human rights practices and reporting have evolved over time. We close with a discussion of our plans for dataset maintenance, updating, and availability.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138935 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 38935&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0138935

DOI: 10.1371/journal.pone.0138935

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0138935