EconPapers    
Economics at your fingertips  
 

High Throughput Kinomic Profiling of Human Clear Cell Renal Cell Carcinoma Identifies Kinase Activity Dependent Molecular Subtypes

Joshua C Anderson, Christopher D Willey, Amitkumar Mehta, Karim Welaya, Dongquan Chen, Christine W Duarte, Pooja Ghatalia, Waleed Arafat, Ankit Madan, Sunil Sudarshan, Gurudatta Naik, William E Grizzle, Toni K Choueiri and Guru Sonpavde

PLOS ONE, 2015, vol. 10, issue 9, 1-14

Abstract: Despite the widespread use of kinase-targeted agents in clear cell renal cell carcinoma (CC-RCC), comprehensive kinase activity evaluation (kinomic profiling) of these tumors is lacking. Thus, kinomic profiling of CC-RCC may assist in devising a classification system associated with clinical outcomes, and help identify potential therapeutic targets. Fresh frozen CC-RCC tumor lysates from 41 clinically annotated patients who had localized disease at diagnosis were kinomically profiled using the PamStation®12 high-content phospho-peptide substrate microarray system (PamGene International). Twelve of these patients also had matched normal kidneys available that were also profiled. Unsupervised hierarchical clustering and supervised comparisons based on tumor vs. normal kidney and clinical outcome (tumor recurrence) were performed and coupled with advanced network modeling and upstream kinase prediction methods. Unsupervised clustering analysis of localized CC-RCC tumors identified 3 major kinomic groups associated with inflammation (A), translation initiation (B), and immune response and cell adhesions (C) processes. Potential driver kinases implicated include PFTAIRE (PFTK1), PKG1, and SRC, which were identified in groups A, B, and C, respectively. Of the 9 patients who had tumor recurrence, only one was found in Group B. Supervised analysis showed decreased kinase activity of CDK1 and RSK1-4 substrates in those which progressed compared to others. Twelve tumors with matching normal renal tissue implicated increased PIM’s and MAPKAPK’s in tumors compared to adjacent normal renal tissue. As such, comprehensive kinase profiling of CC-RCC tumors could provide a functional classification strategy for patients with localized disease and identify potential therapeutic targets.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139267 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 39267&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0139267

DOI: 10.1371/journal.pone.0139267

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0139267