Gait Biomechanics and Patient-Reported Function as Predictors of Response to a Hip Strengthening Exercise Intervention in Patients with Knee Osteoarthritis
Dylan Kobsar,
Sean T Osis,
Blayne A Hettinga and
Reed Ferber
PLOS ONE, 2015, vol. 10, issue 10, 1-19
Abstract:
Objective: Muscle strengthening exercises have been shown to improve pain and function in adults with mild-to-moderate knee osteoarthritis, but individual response rates can vary greatly. Predicting individuals who respond and those who do not is important in developing a more efficient and effective model of care for knee osteoarthritis (OA). Therefore, the purpose of this study was to use pre-intervention gait kinematics and patient-reported outcome measures to predict post-intervention response to a 6-week hip strengthening exercise intervention in patients with mild-to-moderate knee OA. Methods: Thirty-nine patients with mild-to-moderate knee osteoarthritis completed a 6-week hip-strengthening program and were subgrouped as Non-Responders, Low-Responders, or High-Responders following the intervention based on their change in Knee injury Osteoarthritis Outcome Score (KOOS). Predictors of responder subgroups were retrospectively determined from baseline patient-reported outcome measures and kinematic gait parameters in a discriminant analysis of principal components. A 3–4 year follow-up on 16 of the patients with knee OA was also done to examine long-term changes in these parameters. Results: A unique combination of patient-reported outcome measures and kinematic factors was able to successfully subgroup patients with knee osteoarthritis with a cross-validated classification accuracy of 85.4%. Lower patient-reported function in daily living (ADL) scores and hip frontal plane kinematics during the loading response were most important in classifying High-Responders from other sub-groups, while a combination of hip, knee, ankle kinematics were used to classify Non-Responders from Low-Responders. Conclusion: Patient-reported outcome measures and objective biomechanical gait data can be an effective method of predicting individual treatment success to an exercise intervention. Measuring gait kinematics, along with patient-reported outcome measures in a clinical setting can be useful in helping make evidence-based decisions regarding optimal treatment for patients with knee OA.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139923 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 39923&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0139923
DOI: 10.1371/journal.pone.0139923
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().