Sentiment Diffusion of Public Opinions about Hot Events: Based on Complex Network
Xiaoqing Hao,
Haizhong An,
Lijia Zhang,
Huajiao Li and
Guannan Wei
PLOS ONE, 2015, vol. 10, issue 10, 1-16
Abstract:
To study the sentiment diffusion of online public opinions about hot events, we collected people’s posts through web data mining techniques. We calculated the sentiment value of each post based on a sentiment dictionary. Next, we divided those posts into five different orientations of sentiments: strongly positive (P), weakly positive (p), neutral (o), weakly negative (n), and strongly negative (N). These sentiments are combined into modes through coarse graining. We constructed sentiment mode complex network of online public opinions (SMCOP) with modes as nodes and the conversion relation in chronological order between different types of modes as edges. We calculated the strength, k-plex clique, clustering coefficient and betweenness centrality of the SMCOP. The results show that the strength distribution obeys power law. Most posts’ sentiments are weakly positive and neutral, whereas few are strongly negative. There are weakly positive subgroups and neutral subgroups with ppppp and ooooo as the core mode, respectively. Few modes have larger betweenness centrality values and most modes convert to each other with these higher betweenness centrality modes as mediums. Therefore, the relevant person or institutes can take measures to lead people’s sentiments regarding online hot events according to the sentiment diffusion mechanism.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140027 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 40027&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0140027
DOI: 10.1371/journal.pone.0140027
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().