EconPapers    
Economics at your fingertips  
 

META-GSA: Combining Findings from Gene-Set Analyses across Several Genome-Wide Association Studies

Albert Rosenberger, Stefanie Friedrichs, Christopher I Amos, Paul Brennan, Gordon Fehringer, Joachim Heinrich, Rayjean J Hung, Thomas Muley, Martina Müller-Nurasyid, Angela Risch and Heike Bickeböller

PLOS ONE, 2015, vol. 10, issue 10, 1-21

Abstract: Introduction: Gene-set analysis (GSA) methods are used as complementary approaches to genome-wide association studies (GWASs). The single marker association estimates of a predefined set of genes are either contrasted with those of all remaining genes or with a null non-associated background. To pool the p-values from several GSAs, it is important to take into account the concordance of the observed patterns resulting from single marker association point estimates across any given gene set. Here we propose an enhanced version of Fisher’s inverse χ2-method META-GSA, however weighting each study to account for imperfect correlation between association patterns. Simulation and Power: We investigated the performance of META-GSA by simulating GWASs with 500 cases and 500 controls at 100 diallelic markers in 20 different scenarios, simulating different relative risks between 1 and 1.5 in gene sets of 10 genes. Wilcoxon’s rank sum test was applied as GSA for each study. We found that META-GSA has greater power to discover truly associated gene sets than simple pooling of the p-values, by e.g. 59% versus 37%, when the true relative risk for 5 of 10 genes was assume to be 1.5. Under the null hypothesis of no difference in the true association pattern between the gene set of interest and the set of remaining genes, the results of both approaches are almost uncorrelated. We recommend not relying on p-values alone when combining the results of independent GSAs. Application: We applied META-GSA to pool the results of four case-control GWASs of lung cancer risk (Central European Study and Toronto/Lunenfeld-Tanenbaum Research Institute Study; German Lung Cancer Study and MD Anderson Cancer Center Study), which had already been analyzed separately with four different GSA methods (EASE; SLAT, mSUMSTAT and GenGen). This application revealed the pathway GO0015291 “transmembrane transporter activity” as significantly enriched with associated genes (GSA-method: EASE, p = 0.0315 corrected for multiple testing). Similar results were found for GO0015464 “acetylcholine receptor activity” but only when not corrected for multiple testing (all GSA-methods applied; p≈0.02).

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140179 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 40179&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0140179

DOI: 10.1371/journal.pone.0140179

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0140179