ARK: Aggregation of Reads by K-Means for Estimation of Bacterial Community Composition
David Koslicki,
Saikat Chatterjee,
Damon Shahrivar,
Alan W Walker,
Suzanna C Francis,
Louise J Fraser,
Mikko Vehkaperä,
Yueheng Lan and
Jukka Corander
PLOS ONE, 2015, vol. 10, issue 10, 1-16
Abstract:
Motivation: Estimation of bacterial community composition from high-throughput sequenced 16S rRNA gene amplicons is a key task in microbial ecology. Since the sequence data from each sample typically consist of a large number of reads and are adversely impacted by different levels of biological and technical noise, accurate analysis of such large datasets is challenging. Results: There has been a recent surge of interest in using compressed sensing inspired and convex-optimization based methods to solve the estimation problem for bacterial community composition. These methods typically rely on summarizing the sequence data by frequencies of low-order k-mers and matching this information statistically with a taxonomically structured database. Here we show that the accuracy of the resulting community composition estimates can be substantially improved by aggregating the reads from a sample with an unsupervised machine learning approach prior to the estimation phase. The aggregation of reads is a pre-processing approach where we use a standard K-means clustering algorithm that partitions a large set of reads into subsets with reasonable computational cost to provide several vectors of first order statistics instead of only single statistical summarization in terms of k-mer frequencies. The output of the clustering is then processed further to obtain the final estimate for each sample. The resulting method is called Aggregation of Reads by K-means (ARK), and it is based on a statistical argument via mixture density formulation. ARK is found to improve the fidelity and robustness of several recently introduced methods, with only a modest increase in computational complexity. Availability: An open source, platform-independent implementation of the method in the Julia programming language is freely available at https://github.com/dkoslicki/ARK. A Matlab implementation is available at http://www.ee.kth.se/ctsoftware.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140644 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 40644&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0140644
DOI: 10.1371/journal.pone.0140644
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().