Ordering Dynamics in Neuron Activity Pattern Model: An Insight to Brain Functionality
Jasleen Gundh,
Awaneesh Singh and
R K Brojen Singh
PLOS ONE, 2015, vol. 10, issue 10, 1-16
Abstract:
We study the domain ordering kinetics in d = 2 ferromagnets which corresponds to populated neuron activities with both long-ranged interactions, V(r) ∼ r−n and short-ranged interactions. We present the results from comprehensive Monte Carlo (MC) simulations for the nonconserved Ising model with n ≥ 2, interaction range considering near and far neighbors. Our model results could represent the long-ranged neuron kinetics (n ≤ 4) in consistent with the same dynamical behaviour of short-ranged case (n ≥ 4) at far below and near criticality. We found that emergence of fast and slow kinetics of long and short ranged case could imitate the formation of connections among near and distant neurons. The calculated characteristic length scale in long-ranged interaction is found to be n independent (L(t) ∼ t1/(n−2)), whereas short-ranged interaction follows L(t) ∼ t1/2 law and approximately preserve universality in domain kinetics. Further, we did the comparative study of phase ordering near the critical temperature which follows different behaviours of domain ordering near and far critical temperature but follows universal scaling law.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141463 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 41463&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0141463
DOI: 10.1371/journal.pone.0141463
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().