Simulation Models of Leaf Area Index and Yield for Cotton Grown with Different Soil Conditioners
Lijun Su,
Quanjiu Wang,
Chunxia Wang and
Yuyang Shan
PLOS ONE, 2015, vol. 10, issue 11, 1-19
Abstract:
Simulation models of leaf area index (LAI) and yield for cotton can provide a theoretical foundation for predicting future variations in yield. This paper analyses the increase in LAI and the relationships between LAI, dry matter, and yield for cotton under three soil conditioners near Korla, Xinjiang, China. Dynamic changes in cotton LAI were evaluated using modified logistic, Gaussian, modified Gaussian, log normal, and cubic polynomial models. Universal models for simulating the relative leaf area index (RLAI) were established in which the application rate of soil conditioner was used to estimate the maximum LAI (LAIm). In addition, the relationships between LAIm and dry matter mass, yield, and the harvest index were investigated, and a simulation model for yield is proposed. A feasibility analysis of the models indicated that the cubic polynomial and Gaussian models were less accurate than the other three models for simulating increases in RLAI. Despite significant differences in LAIs under the type and amount of soil conditioner applied, LAIm could be described by aboveground dry matter using Michaelis-Menten kinetics. Moreover, the simulation model for cotton yield based on LAIm and the harvest index presented in this work provided important theoretical insights for improving water use efficiency in cotton cultivation and for identifying optimal application rates of soil conditioners.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141835 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 41835&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0141835
DOI: 10.1371/journal.pone.0141835
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().