EconPapers    
Economics at your fingertips  
 

Simulation Assisted Analysis of the Intrinsic Stiffness for Short DNA Molecules Imaged with Scanning Atomic Force Microscopy

Haowei Wang and Joshua N Milstein

PLOS ONE, 2015, vol. 10, issue 11, 1-11

Abstract: Studying the mechanical properties of short segments of dsDNA can provide insight into various biophysical phenomena, from DNA looping to the organization of nucleosomes. Scanning atomic force microscopy (AFM) is able to acquire images of single DNA molecules with near-basepair resolution. From many images, one may use equilibrium statistical mechanics to quantify the intrinsic stiffness (or persistence length) of the DNA. However, this approach is highly dependent upon both the correct microscopic polymer model and a correct image analysis of DNA contours. These complications have led to significant debate over the flexibility of dsDNA at short length scales. We first show how to extract accurate measures of DNA contour lengths by calibrating to DNA traces of simulated AFM data. After this calibration, we show that DNA adsorbed on an aminopropyl-mica surface behaves as a worm-like chain (WLC) for contour lengths as small as ~20 nm. We also show that a DNA binding protein can modify the mechanics of the DNA from that of a WLC.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142277 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 42277&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0142277

DOI: 10.1371/journal.pone.0142277

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pone00:0142277