Experimental and Mathematical-Modeling Characterization of Trypanosoma cruzi Epimastigote Motility
Eduardo Sosa-Hernández,
Gilberto Ballesteros-Rodea,
Jorge A Arias-del-Angel,
Diego Dévora-Canales,
Rebeca G Manning-Cela,
Jesús Santana-Solano and
Moisés Santillán
PLOS ONE, 2015, vol. 10, issue 11, 1-17
Abstract:
The present work is aimed at characterizing the motility of parasite T. cruzi in its epimastigote form. To that end, we recorded the trajectories of two strains of this parasite (a wild-type strain and a stable transfected strain, which contains an ectopic copy of LYT1 gene and whose motility is known to be affected). We further extracted parasite trajectories from the recorded videos, and statistically analysed the following trajectory-step features: step length, angular change of direction, longitudinal and transverse displacements with respect to the previous step, and mean square displacement. Based on the resulting observations, we developed a mathematical model to simulate parasite trajectories. The fact that the model predictions closely match most of the experimentally observed parasite-trajectory characteristics, allows us to conclude that the model is an accurate description of T. cruzi motility.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142478 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 42478&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0142478
DOI: 10.1371/journal.pone.0142478
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).