EconPapers    
Economics at your fingertips  
 

miRLocator: Machine Learning-Based Prediction of Mature MicroRNAs within Plant Pre-miRNA Sequences

Haibo Cui, Jingjing Zhai and Chuang Ma

PLOS ONE, 2015, vol. 10, issue 11, 1-15

Abstract: MicroRNAs (miRNAs) are a class of short, non-coding RNA that play regulatory roles in a wide variety of biological processes, such as plant growth and abiotic stress responses. Although several computational tools have been developed to identify primary miRNAs and precursor miRNAs (pre-miRNAs), very few provide the functionality of locating mature miRNAs within plant pre-miRNAs. This manuscript introduces a novel algorithm for predicting miRNAs named miRLocator, which isbased on machine learning techniques and sequence and structural features extracted from miRNA:miRNA* duplexes. To address the class imbalance problem (few real miRNAs and a large number of pseudo miRNAs), the prediction models in miRLocator were optimized by considering critical (and often ignored) factors that can markedly affect the prediction accuracy of mature miRNAs, including the machine learning algorithm and the ratio between training positive and negative samples. Ten-fold cross-validation on 5854 experimentally validated miRNAs from 19 plant species showed that miRLocator performed better than the state-of-art miRNA predictor miRdup in locating mature miRNAs within plant pre-miRNAs. miRLocator will aid researchers interested in discovering miRNAs from model and non-model plant species.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142753 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 42753&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0142753

DOI: 10.1371/journal.pone.0142753

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0142753