EconPapers    
Economics at your fingertips  
 

Integral Histogram with Random Projection for Pedestrian Detection

Chang-Hua Liu and Jian-Kun Lin

PLOS ONE, 2015, vol. 10, issue 11, 1-10

Abstract: In this paper, we give a systematic study to report several deep insights into the HOG, one of the most widely used features in the modern computer vision and image processing applications. We first show that, its magnitudes of gradient can be randomly projected with random matrix. To handle over-fitting, an integral histogram based on the differences of randomly selected blocks is proposed. The experiments show that both the random projection and integral histogram outperform the HOG feature obviously. Finally, the two ideas are combined into a new descriptor termed IHRP, which outperforms the HOG feature with less dimensions and higher speed.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142820 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 42820&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0142820

DOI: 10.1371/journal.pone.0142820

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0142820