Tools for Single-Cell Kinetic Analysis of Virus-Host Interactions
Jay W Warrick,
Andrea Timm,
Adam Swick and
John Yin
PLOS ONE, 2016, vol. 11, issue 1, 1-19
Abstract:
Measures of cellular gene expression or behavior, when performed on individual cells, inevitably reveal a diversity of behaviors and outcomes that can correlate with normal or diseased states. For virus infections, the potential diversity of outcomes are pushed to an extreme, where measures of infection reflect features of the specific infecting virus particle, the individual host cell, as well as interactions between viral and cellular components. Single-cell measures, while revealing, still often rely on specialized fluid handling capabilities, employ end-point measures, and remain labor-intensive to perform. To address these limitations, we consider a new microwell-based device that uses simple pipette-based fluid handling to isolate individual cells. Our design allows different experimental conditions to be implemented in a single device, permitting easier and more standardized protocols. Further, we utilize a recently reported dual-color fluorescent reporter system that provides dynamic readouts of viral and cellular gene expression during single-cell infections by vesicular stomatitis virus. In addition, we develop and show how free, open-source software can enable streamlined data management and batch image analysis. Here we validate the integration of the device and software using the reporter system to demonstrate unique single-cell dynamic measures of cellular responses to viral infection.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145081 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 45081&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0145081
DOI: 10.1371/journal.pone.0145081
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().