EconPapers    
Economics at your fingertips  
 

Clinical Nomograms to Predict Stone-Free Rates after Shock-Wave Lithotripsy: Development and Internal-Validation

Jung Kwon Kim, Seung Beom Ha, Chan Hoo Jeon, Jong Jin Oh, Sung Yong Cho, Seung-June Oh, Hyeon Hoe Kim and Chang Wook Jeong

PLOS ONE, 2016, vol. 11, issue 2, 1-12

Abstract: Purpose: Shock-wave lithotripsy (SWL) is accepted as the first line treatment modality for uncomplicated upper urinary tract stones; however, validated prediction models with regards to stone-free rates (SFRs) are still needed. We aimed to develop nomograms predicting SFRs after the first and within the third session of SWL. Computed tomography (CT) information was also modeled for constructing nomograms. Materials and Methods: From March 2006 to December 2013, 3028 patients were treated with SWL for ureter and renal stones at our three tertiary institutions. Four cohorts were constructed: Total-development, Total-validation, CT-development, and CT-validation cohorts. The nomograms were developed using multivariate logistic regression models with selected significant variables in a univariate logistic regression model. A C-index was used to assess the discrimination accuracy of nomograms and calibration plots were used to analyze the consistency of prediction. Results: The SFR, after the first and within the third session, was 48.3% and 68.8%, respectively. Significant variables were sex, stone location, stone number, and maximal stone diameter in the Total-development cohort, and mean Hounsfield unit (HU) and grade of hydronephrosis (HN) were additional parameters in the CT-development cohort. The C-indices were 0.712 and 0.723 for after the first and within the third session of SWL in the Total-development cohort, and 0.755 and 0.756, in the CT-development cohort, respectively. The calibration plots showed good correspondences. Conclusions: We constructed and validated nomograms to predict SFR after SWL. To the best of our knowledge, these are the first graphical nomograms to be modeled with CT information. These may be useful for patient counseling and treatment decision-making.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149333 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 49333&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0149333

DOI: 10.1371/journal.pone.0149333

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0149333