Hydrolytic Amino Acids Employed as a Novel Organic Nitrogen Source for the Preparation of PGPF-Containing Bio-Organic Fertilizer for Plant Growth Promotion and Characterization of Substance Transformation during BOF Production
Fengge Zhang,
Xiaohui Meng,
Chenglong Feng,
Wei Ran,
Guanghui Yu,
Yingjun Zhang and
Qirong Shen
PLOS ONE, 2016, vol. 11, issue 3, 1-17
Abstract:
Opportunity costs seriously limit the large-scale production of bio-organic fertilizers (BOFs) both in China and internationally. This study addresses the utilization of amino acids resulting from the acidic hydrolysis of pig corpses as organic nitrogen sources to increase the density of TrichodermaharzianumT-E5 (a typical plant growth-promoting fungi, PGPF). This results in a novel, economical, highly efficient and environmentally friendly BOF product. Fluorescence excitation-emission matrix (EEM) spectroscopy combined with fluorescence regional integration (FRI) was employed to monitor compost maturity levels, while pot experiments were utilized to test the effects of this novel BOF on plant growth. An optimization experiment, based on response surface methodologies (RSMs), showed that a maximum T-E5 population (3.72 × 108 ITS copies g−1) was obtained from a mixture of 65.17% cattle manure compost (W/W), 19.33% maggot manure (W/W), 15.50% (V/W)hydrolytic amino acid solution and 4.69% (V/W) inoculum at 28.7°C after a 14 day secondary solid fermentation. Spectroscopy analysis revealed that the compost transformation process involved the degradation of protein-like substances and the formation of fulvic-like and humic-like substances. FRI parameters (PI, n, PII, n, PIII, n and PV, n) were used to characterize the degree of compost maturity. The BOF resulted in significantly higher increased chlorophyll content, shoot length, and shoot and root dry weights of three vegetables (cucumber, tomato and pepper) by 9.9%~22.4%, 22.9%~58.5%, 31.0%~84.9%, and 24.2%~34.1%, respectively. In summary, this study presents an operational means of increasing PGPF T-E5 populations in BOF to promote plant growth with a concomitant reduction in production cost. In addition, a BOF compost maturity assessment using fluorescence EEM spectroscopy and FRI ensured its safe field application.
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149447 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 49447&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0149447
DOI: 10.1371/journal.pone.0149447
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().