EconPapers    
Economics at your fingertips  
 

Procedure for Detecting Outliers in a Circular Regression Model

Adzhar Rambli, Ali H M Abuzaid, Ibrahim Bin Mohamed and Abdul Ghapor Hussin

PLOS ONE, 2016, vol. 11, issue 4, 1-10

Abstract: A number of circular regression models have been proposed in the literature. In recent years, there is a strong interest shown on the subject of outlier detection in circular regression. An outlier detection procedure can be developed by defining a new statistic in terms of the circular residuals. In this paper, we propose a new measure which transforms the circular residuals into linear measures using a trigonometric function. We then employ the row deletion approach to identify observations that affect the measure the most, a candidate of outlier. The corresponding cut-off points and the performance of the detection procedure when applied on Down and Mardia’s model are studied via simulations. For illustration, we apply the procedure on circadian data.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153074 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 53074&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0153074

DOI: 10.1371/journal.pone.0153074

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0153074