Lagrange Interpolation Learning Particle Swarm Optimization
Zhang Kai,
Song Jinchun,
Ni Ke and
Li Song
PLOS ONE, 2016, vol. 11, issue 4, 1-19
Abstract:
In recent years, comprehensive learning particle swarm optimization (CLPSO) has attracted the attention of many scholars for using in solving multimodal problems, as it is excellent in preserving the particles’ diversity and thus preventing premature convergence. However, CLPSO exhibits low solution accuracy. Aiming to address this issue, we proposed a novel algorithm called LILPSO. First, this algorithm introduced a Lagrange interpolation method to perform a local search for the global best point (gbest). Second, to gain a better exemplar, one gbest, another two particle’s historical best points (pbest) are chosen to perform Lagrange interpolation, then to gain a new exemplar, which replaces the CLPSO’s comparison method. The numerical experiments conducted on various functions demonstrate the superiority of this algorithm, and the two methods are proven to be efficient for accelerating the convergence without leading the particle to premature convergence.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154191 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 54191&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0154191
DOI: 10.1371/journal.pone.0154191
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().