iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids
Yan Xu,
Jun Ding and
Ling-Yun Wu
PLOS ONE, 2016, vol. 11, issue 4, 1-9
Abstract:
Cysteine S-sulfenylation is an important post-translational modification (PTM) in proteins, and provides redox regulation of protein functions. Bioinformatics and structural analyses indicated that S-sulfenylation could impact many biological and functional categories and had distinct structural features. However, major limitations for identifying cysteine S-sulfenylation were expensive and low-throughout. In view of this situation, the establishment of a useful computational method and the development of an efficient predictor are highly desired. In this study, a predictor iSulf-Cys which incorporated 14 kinds of physicochemical properties of amino acids was proposed. With the 10-fold cross-validation, the value of area under the curve (AUC) was 0.7155 ± 0.0085, MCC 0.3122 ± 0.0144 on the training dataset for 20 times. iSulf-Cys also showed satisfying performance in the independent testing dataset with AUC 0.7343 and MCC 0.3315. Features which were constructed from physicochemical properties and position were carefully analyzed. Meanwhile, a user-friendly web-server for iSulf-Cys is accessible at http://app.aporc.org/iSulf-Cys/.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154237 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 54237&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0154237
DOI: 10.1371/journal.pone.0154237
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().